get_unmarked.Rd
Creates model code using the nimbleCode
function.
get_unmarked(occ_specific = FALSE, hab_mask = FALSE, trapsClustered = FALSE)
Logical. If FALSE
, the encounter rate will
not include an occasion-specific loop in the detection function; otherwise,
the model will include a for loop for occasions (K) in the detection function.
Default is FALSE
.
A logical value indicating whether a habitat mask will be
used. Default is FALSE
.
A logical value indicating if traps are clustered in arrays across the sampling area.
Model code created from nimbleCode
.
This function provides templates for unmarked models that can be easily modified to include further model complexity such as covariates explaining detection probability. The models include habitat masking.
# get spatial count model with non-occasion-specific detection
# function, single scaling parameter, no habitat mask, and no clustering
unmarked_model = get_unmarked(occ_specific=FALSE,hab_mask = FALSE,
trapsClustered = FALSE)
# inspect model
unmarked_model
#> {
#> lam0 ~ dunif(0, lam0_upper)
#> sigma ~ dunif(0, sigma_upper)
#> psiu ~ dunif(0, 1)
#> for (i in 1:m) {
#> zu[i] ~ dbern(psiu)
#> su[i, 1] ~ dunif(x_lower, x_upper)
#> su[i, 2] ~ dunif(y_lower, y_upper)
#> distu[i, 1:J] <- sqrt((su[i, 1] - X[1:J, 1])^2 + (su[i,
#> 2] - X[1:J, 2])^2)
#> lamu[i, 1:J] <- lam0 * exp(-distu[i, 1:J]^2/(2 * sigma^2)) *
#> zu[i]
#> }
#> for (j in 1:J) {
#> bigLambda[j] <- sum(lamu[1:m, j])
#> for (k in 1:K) {
#> n[j, k] ~ dpois(bigLambda[j])
#> }
#> }
#> N <- sum(zu[1:m])
#> D <- N/A
#> }